Package: bayesforecast 1.0.1
bayesforecast: Bayesian Time Series Modeling with Stan
Fit Bayesian time series models using 'Stan' for full Bayesian inference. A wide range of distributions and models are supported, allowing users to fit Seasonal ARIMA, ARIMAX, Dynamic Harmonic Regression, GARCH, t-student innovation GARCH models, asymmetric GARCH, Random Walks, stochastic volatility models for univariate time series. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. Model fit can easily be assessed and compared with typical visualization methods, information criteria such as loglik, AIC, BIC WAIC, Bayes factor and leave-one-out cross-validation methods. References: Hyndman (2017) <doi:10.18637/jss.v027.i03>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
Authors:
bayesforecast_1.0.1.tar.gz
bayesforecast_1.0.1.zip(r-4.5)bayesforecast_1.0.1.zip(r-4.4)bayesforecast_1.0.1.zip(r-4.3)
bayesforecast_1.0.1.tgz(r-4.4-x86_64)bayesforecast_1.0.1.tgz(r-4.4-arm64)bayesforecast_1.0.1.tgz(r-4.3-x86_64)bayesforecast_1.0.1.tgz(r-4.3-arm64)
bayesforecast_1.0.1.tar.gz(r-4.5-noble)bayesforecast_1.0.1.tar.gz(r-4.4-noble)
bayesforecast.pdf |bayesforecast.html✨
bayesforecast/json (API)
NEWS
# Install 'bayesforecast' in R: |
install.packages('bayesforecast', repos = c('https://asael697.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/asael697/bayesforecast/issues
bayesian-inferenceforecasting-modelsmcmcstantime-series-analysis
Last updated 10 months agofrom:9909f78d7f. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win-x86_64 | NOTE | Nov 23 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 23 2024 |
R-4.4-win-x86_64 | NOTE | Nov 23 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 23 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 23 2024 |
R-4.3-win-x86_64 | NOTE | Nov 23 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 23 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 23 2024 |
Exports:aicAICcas.stanauto.sarimaautoplotbayes_factorbetabicbridge_samplercauchycheck_residualschisqexponentialextract_stanforecastfouriergammagarchget_parametersget_priorggacfgghistggnormggpacfHoltHwinverse.chisqinverse.gammajeffreylaplaceLKJLocalLevellog_likloglikloomcmc_plotmodelnaivenormalposterior_epredposterior_intervalposterior_predictpredictive_errorprior_summaryreportSarimaset_priorssmstan_garchstan_Holtstan_Hwstan_LocalLevelstan_naivestan_sarimastan_ssmstan_SVMstudentSVMuniformvarstanwaic
Dependencies:abindastsabackportsbase64encbayesplotBHbridgesamplingBrobdingnagbslibcachemcallrcheckmateclicodacolorspacecpp11curldescdigestdistributionaldplyrdygraphsevaluateextraDistrfansifarverfastmapfontawesomeforecastfracdifffsgenericsggplot2ggridgesgluegridExtragtablehighrhtmltoolshtmlwidgetsinlineisobandjquerylibjsonliteknitrlabelinglatticelifecyclelmtestloolubridatemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellmvtnormnlmennetnumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxprophetpspurrrquadprogquantmodQuickJSRR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelreshape2rlangrmarkdownrstanrstantoolssassscalesStanHeadersstringistringrtensorAtibbletidyrtidyselecttimechangetimeDatetinytextseriesTTRurcautf8vctrsviridisLitewithrxfunxtsyamlzoo